Input Output Completion Ports (IOCPs)

Resources

References: http://msdn.microsoft.com/library/techart/msdn_servrapp.htm , http://support.microsoft.com/support/kb/articles/Q192/8/00.ASP , http://msdn.microsoft.com/library/periodic/period00/Winsock.htm .

Winsock2 Mailing list archives at: http://www.stardust.com/archives/winsoc.html

Books: Advanced Windows (3rd Ed.) by Jeffrey Richter (old but good) or Programming Server-Side Applications for Windows 2000 by Jeffrey Richter and Jason Clark, Network programming for Windows by Jones and Ohlund.

Nutshell

IOCPs are kernel objects available in the higher MS operating systems (real ones like WinNT and Win2000). IOCPs are used to efficiently manage the processing of results of asynchronous I/O operations. The IOCP can be considered a manager of a pool of worker (IOCP) threads used to service the completion notifications. With the IOCP, a maximum number of threads are allowed to be active to process completions. If an active IOCP thread calls any of the win32 synchronization functions (SleepEx, WaitForXXXXObjects etc.) and there are additional completion notifications pending additional threads will be woken up from the thread pool to handle the request even if the maximum number of threads are already active. In the case of queued notifications but the maximum IOCP threads active (running) no additional threads will be started and the excess threads are eventually suspended. The advantages of IOCP are the IOCP threads are processed in a LIFO order to keep the most recently used threads address space in memory and it allows the number of active threads to be controlled and thus limiting context switching between threads.

Sample Description

I created a sample message pump using an IOCP in the files ServerPump2.h and ServerPump2.cpp. The code is pretty straightforward using a BufferMgr class to manage the buffers used be the pump in overlapped sends/receives. The pump class also creates a group of threads which run the IOCPThreadFunc() function. The idea is to ‘seed’ the pump with WSARecvFrom() pending which are recycled when a packet is received and data processed. To send out packets, the pump will retrieve a buffer from the manager and perform an overlapped send. I tried some basic flow control by limiting the number of buffers and thus the number of pending I/O operations.

